If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-17t+30=0
a = 1; b = -17; c = +30;
Δ = b2-4ac
Δ = -172-4·1·30
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-13}{2*1}=\frac{4}{2} =2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+13}{2*1}=\frac{30}{2} =15 $
| 3yy=45 | | 3a*2a*a=162 | | 3t-2=26-t | | (x+12)°+(4x-7)°=180 | | 17x-12=144 | | 10x+4=9x+19 | | m+(8/m)=5/2 | | x+26=(3x+47)+(10)+(27+x) | | 4y(7-2)2=-200 | | x(x17)-18x=(x-3)(x+16) | | y+-10=13 | | 5f-45=-33-f | | 21=w/3-12 | | 3/4-x=5 | | 10x-3-5x=8+2x | | d/7.6+5.5=2/9 | | (-7)+6=x | | 3×2^x=96 | | x/5=2x/2 | | 12y/5=0 | | J/v=3.14 | | 5(2x+6)=8x+4 | | 25w-13=-39 | | 3/4xx=75 | | x/3=4x/2 | | (19w)-13-(6w)=-39 | | 3y/3=2y/2 | | -24x^2-40x^2=64 | | 8(7-4d)=-16 | | 4x+8/3=24 | | (-10)+7/4p=-38 | | 9(5x+7)=27+6x |